Pin
Send
Share
Send


Gametogenesis in gametangia

Fungi, algae, and primitive plants form specialized haploid structures called gametangia where gametes are produced through mitosis. In some fungi, for example zygomycota, the gametangia are single cells on the end of hyphae and acting as gametes by fusing into a zygote. More typically, gametangia are multicellular structures that differentiate into male and female organs:

  • antheridium (male)
  • archegonium (female)

Gametogenesis in flowering plants

In flowering plants, the male gamete is produced inside the pollen grain through the division of a generative cell into two sperm nuclei. Depending on the species, this can occur while the pollen forms in the anther or after pollination and growth of the pollen tube. The female gamete is produced inside the embryo sac of the ovule.

Gamete cycle

A gamete of one generation ultimately creates gametes in the next generation, while retaining the same quantity of genetic information.

Gametes typically are haploid cells; that is, they contain one half a complete set of chromosomes (the actual number varies from species to species). When two gametes fuse (in animals typically involving a sperm and an egg), they form a zygote-a cell that has two complete sets of chromosomes and therefore is diploid. The zygote receives one set of chromosomes from each of the two gametes through the fusion of the two gamete nuclei. After multiple cell divisions and cellular differentiation, a zygote develops, first into an embryo, and ultimately into a mature individual capable of producing gametes.

In contrast to a gamete, the diploid somatic cells of an individual contain one copy of the chromosome set from the sperm and one copy of the chromosome set from the egg; that is, the cells of the offspring have genes expressing characteristics of both the father and the mother. A gamete's chromosomes are not exact duplicates of either of the sets of chromosomes carried in the somatic cells of the individual that produced the gametes. They can be hybrids produced through crossover (a form of genetic recombination) of chromosomes, which takes place in meiosis. This hybridization has a random element, and the chromosomes tend to be a little different in every gamete that an individual produces. This recombination and the fact that the two chromosome sets ultimately come from either a grandmother or a grandfather on each parental side account for the genetic dissimilarity of siblings.

References

  • Alberts, B., D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson. Molecular Biology of the Cell, 2nd edition. New York: Garland Publishing, 1989. ISBN 0824036956.
  • Crouch, H. K., J. H. Crouch, R. L. Jarret, P. B. Cregan, and R. Ortiz. 1998. Segregation at microsatellite loci in haploid and diploid gametes of musa Crop Sci 38: 211-217. Retrieved September 11, 2008.
  • Elrod, S. L., and W. L. Stansfield. 2002. Euploidy In S. L. Elrod, and W. L. Stansfield, Theory and Problems of Genetics. McGraw-Hill Professional. ISBN 0071362061. Retrieved September 11, 2008.
  • Foyn, B. 1962. Diploid gametes in Ulva Nature 193: 300-301. Retrieved September 11, 2008.

Pin
Send
Share
Send